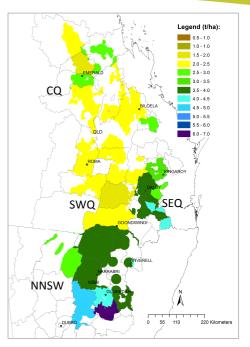
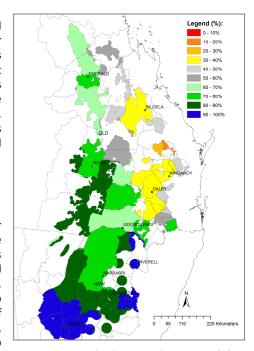
SEASONAL CROP OUTLOOK

Sorghum - January 2017

SUMMARY


The chance for an above average yielding sorghum crop for the 2016/17 summer growing season in north-eastern Australia (NEAUS) remains high. However, some variation in the outlook among local regions exists. Specifically, most areas in CQ are showing close to average crop yield expectations, while most areas in SEQ and SWQ are having sorghum yield outcomes slightly above the long-term median. The exception is for most areas in NNSW that are having predicted yield outcomes well above the long-term expectation. However, widespread average to above average rainfall is needed, during the next couple of months to induce some late plantings and improve the current crop outlook across all areas of the NEAUS summer cropping region. *It should be noted*, this is still early in the growing season and the range of likely sorghum yield outcomes remains wide. This crop outlook is based on a crop-free (fallow) practice through the winter season and therefore areas with longer fallow practices are likely to have better yield prospects for the coming season.

GENERAL CONDITIONS


Rainfall during December was below to very much below average in most of QLD's cropping region, while average rainfall was recorded in most of NNSW cropping region. This rainfall pattern was similar to that of October to December across the NE AUS cropping region. Currently, estimated stored soil moisture levels (simulated through winter fallow using APSIM) varied across the summer cropping region (Map 2). Most areas of the central Highlands in CQ have soil water recharge levels slightly above half of plant available soil water capacity (PAWC), while most areas in SWQ and NNSW have recharged to above three-quarters (>75%) of the available soil moisture profile levels. Conversely, most areas in SEQ have recharged to slightly below half (30-40%) of the PAWC for mostly deeper soil moisture profile soils. Rainfall occurring in January will allow good planting opportunities specifically, for CQ and improve the crop yield expectation in other parts of the summer cropping region. There remains a need for further widespread above average rainfall over the next month to induce late plantings and improve the current crop outlook specifically, in parts of CQ and SEQ. The recent pattern of the SOI i.e. "consistently near zero" for the Nov-Dec period, indicates chances similar to climatology (i.e. 50:50) of receiving above average rainfall for most of the summer grains cropping region over the next 3-months (www.longpaddock.qld.gov.au). ENSO remains in a near "neutral" range with most of the sea surface temperatures (SSTs) in the central tropical Pacific Ocean cooled and correspondingly the SOI returned to near zero values (http://www.bom.gov.au/climate/enso/tracker/).

OUTLOOK

This regional sorghum crop outlook is based on the assumption of cropping after winter fallow. The benchmark for this outlook is the simulated long-term median shire sorghum yield within the broad NEAUS cropping region (Map 1). The median yield is based on predicted performance over the past 115-years using an agro-climatic model for sorghum with long-term rainfall records (see descriptive note for more details). Probability of exceeding the long-term shire median yield for this year is shown in Map 3. Any areas coloured in light grey, yellow and red have a poor to very poor chance of having crops above the long-term median yield, whereas areas coloured in dark grey, green and blue have good to very good chances of producing higher yielding crops. Map 3 is derived by considering conditions up to date (end of December) and projecting forward based on rainfall conditions in years with SOI phase similar to this year - "consistently near zero" in the November to December period. The calculation of benchmark yields and outlook chances do not take into account effects of poor crop nutrition or damage due to pests, diseases, frosts or extreme events (e.g. heat waves).

Map 1: Long-term median simulated shire sorghum yield (115 years)

Map 2: Aggregated soil water recharge status (%) as at 1st January 2017. Winter fallow simulated from 1st of April 2016.

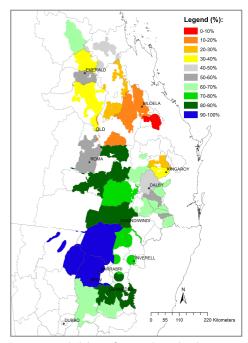
Win and iPAD by telling us what you have planted: www.paddockwatch.com.au; Online available at: www.qaafi.uq.edu.au/industry/crop-outlook

The current outlook results from the combination of recharge of starting soil moisture profile levels and the current seasonal outlook based on SOI phase analogue years from history similar to the phase at the end of December 2016. This resulted in the current crop outlook for above average chances (70% to 80%) in SWQ and average to slightly above average chances (40% to 70%) in SEQ of exceeding the long-term median yield for most areas in that region. Similarly, most of NNSW has a high chance of exceeding the long-term median shire yield (70% – 90%). The exception to this good outlook is in the CQ region, where most parts (e.g. Dawson Callide) have a reduced chance of exceeding the long-term median. Note: Final summer crop yield is usually more affected by in-crop rainfall and temperatures (during crop growth) than by the soil moisture at sowing although it remains important in final crop yield expectations.

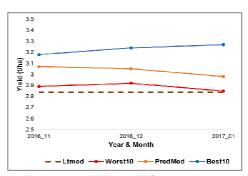
At this early stage of the season, the range of likely yield outcomes for the 2016/2017 season (see Regional Outlook section) remains wide as much of the growing season remains in the projected forecast. Updating each month, as the season progresses, causes the range of yield outcomes to narrow towards the final realised yield at the end of the season.

POOR CROP CHANCE

At present, this early in the growing season, chances for this season's sorghum crop to fall below the worst 10% (crop yield) of all years are slightly increased in parts of CQ, while the remainder of the cropping region is showing chances close to the long-term expectation (i.e. 10%; Data not shown).


It should be noted that these values are calculated as broad indicators for shire scale yield and do not apply to farm level.

STATE OUTLOOK


The current regional outlook shows the forecast median yield for the entire NEAUS' sorghum-cropping region at the end of December as 2.98 t/ha, which is above the long-term median of 2.84 t/ha (Graph A). There is however, a 10% chance that the state yield could be lower than 2.85t/ha, or higher than 3.27 t/ha. At local regional level, Queensland (QLD), central Qld (CQ), south west QLD (SWQ), south east Qld (SEQ) and northern NSW (NNSW) (Map 1), the forecast yield (t/ha) ranges are as follows:

At this early stage of the season, all southern QLD regions are showing yield expectations slightly above the long-term regional sorghum yield expectation, while CQ has a predicted median close to the long-term median expectation for that region. The exception is NNSW, which has predicted median in the top 20th percentile ranked relative to all years. However, a wide range of possible outcomes still exists, which will narrow as the season progresses and the actual climate experienced is incorporated in the analysis. The current SOI phase ("consistently near zero") indicates chances to receive above average rainfall are close to climatology (50:50) in most parts of NE AUS summer cropping region over the next 3-months.

Map 3: Probability of exceeding the long-term simulated median shire sorghum yield.

Graph A: NE AUS sorghum yield forecast trajectories (Ltmed: long-term median, Worst10: 10th, PredMed: 50th and Best10: 90th percentiles).

DESCRIPTIVE NOTE:

The seasonal sorghum outlook is based on the integration of (i) a simple agro-climatic sorghum stress index model (i.e. Bare fallow routine -Ritchie, 1972; Sorghum stress index model adapted from - Fitzpatrick and Nix, 1969; Nix and Fitzpatrick, 1969), which is sensitive to water deficit or excess during the growing season, (ii) actual climate data up to the forecasting date and (iii) projected climate data after that date. These projected data are drawn from historical analogue years based on similarity to the prevailing phase of the Southern Oscillation Index (SOI) (Stone et al., 1996). The sorghum model is run from 1 April the year before harvest in order to account for the influence of the winter fallow on starting soil moisture conditions. The model shire input parameters (i.e. plant available water content, planting rain & stress index period) have been selected based on the best fit when calibrated against actual shire sorghum yields from the Australian Bureau of Statistics (ABS) census years for the period 1983 - 2000, 2006, 2011. Oz-Sorghum MII showed cross-validated correlations (r) ranging from 0.6 to 0.92 within the main sorghum producing shires of NE Australia (35 in total). These shires contributes to 96% of total average production of all sorghum producing shires. (For more detail see Potgieter et. al., 2005)